2022-09-23
吸附現象產生的熱量被稱為“吸附熱",并伴有熱量的產生。吸附是“吸附質與固體表面之間的相互作用"與“吸附質之間的相互作用"的總和,并且這些相互作用的總和可以由“吸附熱"來表示,因此吸附熱對于評價吸附劑固體表面特性至關重要。吸附熱可以使用熱量計進行評估或通過測量不同溫度下的吸附等溫線(最少 2 個點或更多)代入 Clausius-Clapeyron(方程 1)計算得出。在這里,-ΔHads是與吸附相關的焓變,可以等效為微分吸附熱qst。
圖1 不同溫(wen)度下的(de)吸附等(deng)溫(wen)線
在給定的吸附量的等量吸附熱 qst是 計算從2個或以上不同溫度下的吸附等溫線上相等的吸附量時的壓力點計算的出的(參見方程 2) (圖 1)。超過單分子層吸附量時,吸附熱接近凝結熱,因此不同溫度T1、T2的(de)溫差應最多小于10 K。吸(xi)附熱從低吸(xi)附量(liang)到(dao)單分子(zi)層吸(xi)附的(de)變化,使我(wo)們能(neng)理(li)解材料表(biao)面(mian)與吸(xi)附質之(zhi)(zhi)間(jian)的(de)相(xiang)互作(zuo)用和吸(xi)附質與吸(xi)附質之(zhi)(zhi)間(jian)的(de)相(xiang)互作(zuo)用。我(wo)們的(de)分析(xi)軟件使我(wo)們能(neng)夠很容易地分析(xi)兩到(dao)三個吸(xi)附等溫線以(yi)上的(de)等量(liang)吸(xi)附熱。
用BELSORP MAX測試了GCB-I(石墨化碳黑:Vulcan 3G)、NGCB(碳黑:#51)在[email protected] K和87.3K下,從極低相對壓力(p/p0=1E-8)開始的吸附等溫線,并繪制了等量微分吸附熱 (qst)與表面覆蓋度 (θ = VP/P0/Vm;θ =1 代表單層形成)的關系圖,如圖2所示。圖中顯示 GCB-I 在 0 < θ<0.2區間,qst減少約10%,這表明GCB-I是一個輕微的異質表面,在0.2<θ <0.85區間的10%增加量代表了GCB表面吸附的氮分子之間的相互作用,這使我們能夠確認GCB-I表面的均一性。這種表面的均勻性也可以從qst在λ>0.85時迅速減少得到解釋,其中當λ=1時,qst=6.3 kJ mol-1接近 [email protected] K 下的凝聚能量5.58 kJ mol-1。另一方面,NGCB的qst正逐漸從13.9 kJ mol-1降低到6.9 kJ mol-1。此變化表(biao)(biao)示 NGCB 上(shang)存在(zai)吸附活性位(wei)(邊緣(yuan)和(he)表(biao)(biao)面的官(guan)能(neng)團),表(biao)(biao)明它們廣泛地能(neng)量分布。這允(yun)許NGCB表(biao)(biao)面的異質性和(he)評估。
通過等量吸附熱觀察到的表面特性也可以從兩種碳的αs曲線(圖3)中得到確認。NGCB 的 N 覆蓋在 p/p0=1E-7左右開始,但其αs曲線(xian)中沒有臺(tai)階(IUPAC VI型(xing)等溫(wen)線(xian)),與GCB-I相比,其表面屬性可以定性地判斷為非均勻(yun)(異質(zhi)表面)。
參(can)考文(wen)獻: K. Nakai, M. Yoshida, J. Sonoda, Y. Nakada, M. Hakuman and H. Naono, J. Col. & Int. Sci.、 351, 507-514(2010)